Powered by Squarespace

Entries in Hubble (3)


Stellar Motions in Outer Halo Shed New Light on Milky Way Evolution

This illustration shows the disk of our Milky Way galaxy, surrounded by a faint, extended halo of old stars. Astronomers using the Hubble Space Telescope to observe the nearby Andromeda galaxy serendipitously identified a dozen foreground stars in the Milky Way halo. They measured the first sideways motions (represented by the arrows) for such distant halo stars. The motions indicate the possible presence of a shell in the halo, which may have formed from the accretion of a dwarf galaxy. This observation supports the view that the Milky Way has undergone continuing growth and evolution over its lifetime by consuming smaller galaxies. Illustration Credit: NASA, ESA, and A. Feild (STScI) Science Credit: NASA, ESA, A. Deason and P. Guhathakurta (University of California, Santa Cruz), and R. van der Marel, T. Sohn, and T. Brown (STScI)
Peering deep into the vast stellar halo that envelops our Milky Way galaxy, astronomers using NASA's Hubble Space Telescope have uncovered tantalizing evidence for the possible existence of a shell of stars that are a relic of cannibalism by our Milky Way.
Hubble was used to precisely measure, for the first time ever, the sideways motions of a small sample of stars located far from the galaxy's center. Their unusual lateral motion is circumstantial evidence that the stars may be the remnants of a shredded galaxy that was gravitationally ripped apart by the Milky Way billions of years ago. These stars support the idea that the Milky Way grew, in part, through the accretion of smaller galaxies.
"Hubble's unique capabilities are allowing astronomers to uncover clues to the galaxy's remote past. The more distant regions of the galaxy have evolved more slowly than the inner sections. Objects in the outer regions still bear the signatures of events that happened long ago," said Roeland van der Marel of the Space Telescope Science Institute (STScI) in Baltimore, Md.
They also offer a new opportunity for measuring the "hidden" mass of our galaxy, which is in the form of dark matter (an invisible form of matter that does not emit or reflect radiation). In a universe full of 100 billion galaxies, our Milky Way "home" offers the closest and therefore best site for detailed study of the history and architecture of a galaxy.
A team of astronomers led by Alis Deason of the University of California, Santa Cruz, and van der Marel identified 13 stars located roughly 80,000 light-years from the galaxy's center. They lie in the Milky Way's outer halo of ancient stars that date back to the formation of our galaxy.
The team was surprised to find that the stars showed more of a sideways, or tangential, amount of motion than they expected. This movement is different from what astronomers know about the halo stars near the Sun, which move predominantly in radial orbits. Stars in these orbits plunge toward the galactic center and travel back out again. The stars' tangential motion can be explained if there is an over-density of stars at 80,000 light-years, like cars backing up on an expressway. This traffic jam would form a shell-like feature, as seen around other galaxies.
Deason and her team plucked the outer halo stars out of seven years' worth of archival Hubble telescope observations of our neighboring Andromeda galaxy. In those observations, Hubble peered through the Milky Way's halo to study the Andromeda stars, which are more than 20 times farther away. The Milky Way's halo stars were in the foreground and considered as clutter for the study of Andromeda. But to Deason's study they were pure gold. The observations offered a unique opportunity to look at the motion of Milky Way halo stars.
Finding the stars was meticulous work. Each Hubble image contained more than 100,000 stars. "We had to somehow find those few stars that actually belonged to the Milky Way halo," van der Marel said. "It was like finding needles in a haystack."
The astronomers identified the stars based on their colors, brightnesses, and sideways motions. The halo stars appear to move faster than the Andromeda stars because they are so much closer. Team member Sangmo Tony Sohn of STScI identified the halo stars and measured both the amount and direction of their slight sideways motion. The stars move on the sky only about one milliarcsecond a year, which would be like watching a golf ball on the Moon moving one foot per month. Nonetheless, this was measured with 5 percent precision, made possible in visible-light observations because of Hubble's razor-sharp view and instrument consistency.
"Measurements of this accuracy are enabled by a combination of Hubble's sharp view, the many years' worth of observations, and the telescope's stability. Hubble is located in the space environment, and it's free of gravity, wind, atmosphere, and seismic perturbations," van der Marel said.
Stars in the inner halo have highly radial orbits. When the team compared the tangential motion of the outer halo stars with their radial motion, they were very surprised to find that the two were equal. Computer simulations of galaxy formation normally show an increasing tendency towards radial motion if one moves further out in the halo. These observations imply the opposite trend. The existence of a shell structure in the Milky Way halo is one plausible explanation of the researchers' findings. Such a shell can form by accretion of a satellite galaxy. This is consistent with a picture in which the Milky Way has undergone continuing evolution over its lifetime due to the accretion of satellite galaxies.
The team compared their results with data of halo stars recorded in the Sloan Digital Sky Survey. Those observations uncovered a higher density of stars at about the same distance as the 13 outer halo stars in their Hubble study. A similar excess of halo stars exists across the Triangulum and Andromeda constellations. Beyond that radius, the number of stars plummets.
Deason immediately thought the two results were more than just coincidence. "What may be happening is that the stars are moving quite slowly because they are at the apocenter, the farthest point in their orbit about the hub of our Milky Way," Deason explained. "The slowdown creates a pileup of stars as they loop around in their path and travel back towards the galaxy. So their in and out or radial motion decreases compared with their sideways or tangential motion."
Shells of stars have been seen in the halos of some galaxies, and astronomers predicted that the Milky Way may contain them, too. But until now there was limited evidence for their existence. The halo stars in our galaxy are hard to see because they are dim and spread across the sky.
Encouraged by this study, the team hopes to search for more distant halo stars in the Hubble archive. "These unexpected results fuel our interest in looking for more stars to confirm that this is really happening," Deason said. "At the moment we have quite a small sample. So we really can make it a lot more robust with getting more fields with Hubble." The Andromeda observations only cover a very small "keyhole view" of the sky.
The team's goal is to put together a clearer picture of the Milky Way's formation history. By knowing the orbits and motions of many halo stars it will also be possible to calculate an accurate mass for the galaxy. "Until now, what we have been missing is the stars' tangential motion, which is a key component. The tangential motion will allow us to better measure the total mass distribution of the galaxy, which is dominated by dark matter. By studying the mass distribution, we can see whether it follows the same distribution as predicted in theories of structure formation," Deason said.
The Hubble study will appear in an upcoming issue of the Astrophysical Journal.
The science team consists of A. Deason and P. Guhathakurta of UCO/Lick Observatory, University of California, Santa Cruz, Calif., and R.P. van der Marel, S.T. Sohn, and T.M. Brown of the Space Telescope Science Institute, Baltimore, Md.



Massive Galaxies See Big Meals and Snacks in Other Galaxies

This image, taken by the Hubble Space Telescope, shows a ring of light from a distant galaxy created when a closer galaxy in the foreground – not shown in this processed image – acts as a “gravitational lens” to bend the light from the more distant galaxy into the ring of light, known as an Einstein ring. In a new study, University of Utah astronomer Adam Bolton and colleagues measured these Einstein rings to determine the mass of 79 lens galaxies that are massive elliptical galaxies, the largest kind of galaxy with 100 billion stars. The study found the centers of these big galaxies are getting denser over time, evidence of repeated collisions between massive galaxies. Image Credit: Joel Brownstein, University of Utah, for NASA/ESA and the Sloan Digital Sky Survey

Gravity Lenses Suggest Big Collisions Make Galaxies Denser

Using gravitational “lenses” in space, University of Utah astronomers discovered that the centers of the biggest galaxies are growing denser – evidence of repeated collisions and mergers by massive galaxies with 100 billion stars.

“We found that during the last 6 billion years, the matter that makes up massive elliptical galaxies is getting more concentrated toward the centers of those galaxies. This is evidence that big galaxies are crashing into other big galaxies to make even bigger galaxies,” says astronomer Adam Bolton, principal author of the new study.

“Most recent studies have indicated that these massive galaxies primarily grow by eating lots of smaller galaxies,” he adds. “We’re suggesting that major collisions between massive galaxies are just as important as those many small snacks.”

The new study – published recently in The Astrophysical Journal – was conducted by Bolton’s team from the Sloan Digital Sky Survey-III using the survey’s 2.5-meter optical telescope at Apache Point, N.M., and the Earth-orbiting Hubble Space Telescope.

The telescopes were used to observe and analyze 79 “gravitational lenses,” which are galaxies between Earth and more distant galaxies. A lens galaxy’s gravity bends light from a more distant galaxy, creating a ring or partial ring of light around the lens galaxy.

The size of the ring was used to determine the mass of each lens galaxy, and the speed of stars was used to calculate the concentration of mass in each lens galaxy.

Bolton conducted the study with three other University of Utah astronomers and with members of the Sloan Digital Sky Survey.

Big Meals and Snacks for Massive Elliptical Galaxies

The new study deals with the biggest, most massive kind of galaxies, known as massive elliptical galaxies, which each contain about 100 billion stars. Counting unseen “dark matter,” they contain the mass of 1 trillion stars like our sun.

“They are the end products of all the collisions and mergers of previous generations of galaxies,” perhaps hundreds of collisions,” Bolton says.

Despite recent evidence from other studies that massive elliptical galaxies grow by eating much smaller galaxies, Bolton’s previous computer simulations showed that collisions between large galaxies are the only galaxy mergers that lead, over time, to increased mass density on the center of massive elliptical galaxies.

When a small galaxy merges with a larger one, the pattern is different. The smaller galaxy is ripped apart by gravity from the larger galaxy. Stars from the smaller galaxy remain near the outskirts – not the center – of the larger galaxy.

“But if you have two roughly comparable galaxies and they are on a collision course, each one penetrates more toward the center of the other, so more mass ends up in the center,” Bolton says.

Other recent studies indicate stars are spread more widely within galaxies over time, supporting the idea that massive galaxies snack on much smaller ones.

“We’re finding galaxies are getting more concentrated in their mass over time even though they are getting less concentrated in the light they emit,” Bolton says.

He believes large galaxy collisions explain the growing mass concentration, while galaxies gobbling smaller galaxies explain more starlight away from galactic centers.

“Both processes are important to explain the overall picture,” Bolton says. “The way the starlight evolves cannot be explained by the big collisions, so we really need both kinds of collisions, major and minor – a few big ones and a lot of small ones.”

The new study also suggests the collisions between large galaxies are “dry collisions” – meaning the colliding galaxies lack large amounts of gas because most of the gas already has congealed to form stars – and that the colliding galaxies hit each other “off axis” or with what Bolton calls “glancing blows” rather than head-on.

Sloan Meets Hubble: How the Study Was Conducted

The University of Utah joined the third phase of the Sloan Digital Sky Survey, known as SDSS-III, in 2008. It involves about 20 research institutions around the world. The project, which continues until 2014, is a major international effort to map the heavens as a way to search for giant planets in other solar systems, study the origin of galaxies and expansion of the universe, and probe the mysterious dark matter and dark energy that make up most of the Universe.

Bolton says his new study was “almost gravy” that accompanied an SDSS-III project named BOSS, for Baryon Oscillation Spectrographic Survey. BOSS is measuring the history of the Universe’s expansion with unprecedented precision. That allows scientists to study the dark energy that accelerates expansion of the Universe. The Universe is believed to be made of only 4 percent regular matter, 24 percent unseen “dark matter” and 72 percent yet-unexplained dark energy.

During BOSS’ study of galaxies, computer analysis of light spectra emitted by galaxies revealed dozens of gravitational lenses, which were discovered because the signatures of two different galaxies are lined up.

Bolton’s new study involved 79 gravitational lenses observed by two surveys:

– The Sloan Survey and the Hubble Space Telescope collected images and emitted-light color spectra from relatively nearby, older galaxies – including 57 gravitational lenses – 1 billion to 3 billion years back into the cosmic past.

– Another survey identified 22 lenses among more distant, younger galaxies from 4 billion to 6 billion years in the past.

The rings of light around gravitational-lens galaxies are named “Einstein rings” because Albert Einstein predicted the effect, although he wasn’t the first to do so.

“The more distant galaxy sends out diverging light rays, but those that pass near the closer galaxy get bent into converging light rays that appear to us as of a ring of light around the closer galaxy,” says Bolton.

The greater the amount of matter in a lens galaxy, the bigger the ring. That seems counterintuitive, but the larger mass pulls with enough gravity to make the distant star’s light bend so much that lines of light cross as seen by the observer, creating a bigger ring.

If there is more matter concentrated near the center of a galaxy, the faster stars will be seen moving toward or being slung away from the galactic center, Bolton says.

Alternative Theories

Bolton and colleagues acknowledge their observations might be explained by theories other than the idea that galaxies are getting denser in their centers over time:

– Gas that is collapsing to form stars can increase the concentration of mass in a galaxy. Bolton argues the stars in these galaxies are too old for that explanation to work.

– Gravity from the largest massive galaxies strips neighboring “satellite” galaxies of their outskirts, leaving more mass concentrated in the centers of the satellite galaxies. Bolton contends that process is not likely to produce the concentration of mass observed in the new study and explain how the extent of that central mass increases over time.

– The researchers merely detected the boundary in each galaxy between the star-dominated inner regions and the outer regions, which are dominated by unseen dark matter. Under this hypothesis, the appearance of growing galaxy mass concentration over time is due to a coincidence in researchers’ measurement method, namely that they are measuring younger galaxies farther from their centers and measuring older galaxies closer to their centers, giving an illusion of growing mass concentration in galactic centers over time. Bolton says this measurement difference is too minor to explain the observed pattern of matter density within the lens galaxies.

This Hubble Space Telescope image is the same as the previous image, but without the same processing. So the Einstein ring of light from the distant galaxy appears less sharp, but and the closer “gravitational lens” galaxy is now visible in the middle of the image. Image Credit: Joel Brownstein, University of Utah, for NASA/ESA and the Sloan Digital Sky Survey



NGC 3344: Uma Galáxia Em Rotação

A NGC 3344 é uma gloriosa galáxia espiral que tem aproximadamente metade do tamanho da Via Láctea e localiza-se a 25 milhões de anos-luz de distância da Terra. Nós, aqui na Terra, temos a sorte de podermos observar ess bela galáxia de frente, permitindo assim que possamos estudar sua estrutura de forma detalhada. A galáxia mostra um anel externo girando ao redor de um anel mais interno com uma sutil estrutura de barra no seu centro. A região central da galáxia é populada predominantemente  por estrelas jovens, com franjas galácticas também mostrando regiões de uma ativa formação de estrelas. 

Barras centrais são encontradas em aproximadamente dois terços das galáxias espirais, na NGC 3344 essa feição é clara de se ver embora não seja tão espetacular como a de outras como a da heic 1202. A alta densidade de estrelas na região central das galáxias dá a elas influência gravitacional suficiente para afetar o movimento de outras estrelas na galáxia.

Contudo, a as estrelas mais externas da NGC 3344 estão se movendo de maneira pouco comum, embora a presença da barra não possa ser inteiramente considerada para isso, os astrônomos têm aqui um belo mistério para resolver. É possível que no passado, a NGC 3344 passou perto de outra galáxia e criou as estrelas, mas mais pesquisa é necessária para se ter confiança nesse tipo de afirmação. A imagem acima é uma combinação de exposições feitas na luz visível e no infravermelho próximo, usando a Advanced Camera For Surveys do Hubble. O campo de visão da imagem acima é de 3.4 por 3.4 arcos de minuto, ou algo em torno de um décimo o diâmetro da Lua Cheia.